LETTERS 1999 Vol. 1, No. 8 ¹²⁴⁹-**¹²⁵²**

ORGANIC

Synthesis of Tedanolide and 13-Deoxytedanolide. Assembly of a Common C(1)−**C(11) Subtarget**

Amos B. Smith, III,* and Stephanie A. Lodise

*Department of Chemistry, Laboratory for Research on the Structure of Matter, and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsyl*V*ania 19104*

smithab@sas.upenn.edu

Received August 9, 1999

ABSTRACT

In this Letter we describe a synthetic strategy and an efficient assembly of a common C(1)−**C(11) subtarget, (**−**)-3, for (**+**)-tedanolide (1) and (**+**)-13-deoxytedanolide (2), architecturally complex marine macrolides displaying potent antitumor activity. Key elements of the synthesis include two iterations of the Evans aldol protocol to construct the C(1)**−**C(6) moiety and a stereocontrolled vinyl anion addition to generate the C(8,9) trisubstituted olefin incorporating stereogenicity at C(7). Alkylation with a model epoxide demonstrates that (**−**)-3 is a competent dithiane for further elaboration of the macrolide skeleton.**

In 1984 Schmitz and co-workers¹ isolated $(+)$ -tedanolide (1) , a structurally complex 18-membered macrolide, from *Tedania ignis*, a prevalent Caribbean sponge commonly referred to as "fire sponge" due to the sensation induced upon human contact.2,3 The relative and absolute stereochemistry of **1** was determined by X-ray diffraction, exploiting the anomalous dispersion of oxygen.¹ More recently (1991), Fusetani and co-workers4 disclosed the isolation and structural elucidation of the 13-deoxy congener (**2**) from the Japanese sponge *Mycale adhaerens*.

Tedanolide (**1**) displays in vitro cytotoxicity against KB and PS cell lines $(ED_{50}$'s: 0.25 ng/mL and 16 pg/mL, respectively)¹ and in vivo antitumor activity, increasing the lifespan of mice implanted with lymphocytic leukemia cells (23% at 1.56 *µ*g/kg).5 Deoxytedanolide (**2**) also displays significant antineoplastic activity (P388: T/C, 189%; 0.125 mg/kg).⁴

Tedanolide and deoxytedanolide represent unusual macrolides in that lactonization occurs at a primary hydroxyl instead of the customary secondary hydroxyl;⁶ equally intriguing is the high level of oxygen functionality. Not surprisingly, this combination of structural complexity and antitumor activity has engendered considerable interest on the part of the synthetic community.⁷ In this Letter, we outline a unified synthetic strategy and disclose an efficient

⁽¹⁾ Schmitz, F. J.; Gunasekera, S. P.; Yalamanchili, G.; Hossain, M. B.; van der Helm, D. *J. Am. Chem. Soc.* **1984**, *106*, 7251.

⁽²⁾ de Laubenfels, M. W. *Trans. Zool. Soc. London* **1950**, No. 27, 1.

⁽³⁾ Yaffee, H. L. S. L.; Sturgardter, F. *Arch. Dermatol*. **1963**, *87*, 601. (4) Fusetani, N.; Sugawara, T.; Matsunaga, S.; Hirota, H. *J. Org. Chem.* **1991**, *56*, 4971.

⁽⁵⁾ Schmitz, F. J.; Genasekera, S. P.; Hossain, M. B.; van der Helm, D.; Yalamanchili, G. U.S. Patent Application 87-7347 870127.

⁽⁶⁾ Masamune, S.; Bates, G. S.; Corcoran, J. W. *Angew. Chem., Int. Ed. Engl.* **1977**, *16*, 585.

assembly of a common advanced $C(1)-C(11)$ subtarget (3) for tedanolide (**1**) and 13-deoxytedanolide (**2**).

Consistent with concurrent investigations on the utility of dithianes⁸ as linchpins for complex molecule construction, disconnectionat the C(29) lactone and C(11,12) σ -bonds of **1** and **2** leads to dithiane **3**, a common subtarget for union with **5** for tedanolide (**1**) and with **6** for 13-deoxytedanolide (**2**). Further disconnection of **3** at C(7,8) yields aldehyde **7** and vinyl iodide **8**.

The synthesis of aldehyde **7** began with (S) - $(-)$ -2,2dimethyl-1,3-dioxolane-4-carboxaldehyde (**9**), available in three steps from ascorbic acid (Scheme 2).⁹ Iterative Evans

aldol¹⁰ condensations incorporating silyl protection (TBSOTf/ 2,6-lutidine) and conversion via the thioester to aldehyde (+)- **12**¹¹ were followed by LiBH4 reduction and acetal formation to furnish $(+)$ **-13**.¹¹ Due to the observed lability of a methoxy
group at $C(3)$, we chose to forestall metholation of the $C(3)$ group at $C(3)$, we chose to forestall methylation of the $C(3)$ hydroxyl in $(+)$ -11¹¹ until after both the second Evans aldol and installation of the *p*-methoxyphenyl acetal. Removal of the silyl group at $C(3)$ in $(+)$ -13 with TBAF and methylation (NaH, MeI) then provided $(+)$ -14.¹¹
Selective reduction of the acetal

Selective reduction of the acetal in $(+)$ -14 was initially accompanied by reduction of the acetonide (ca. 50%). This unanticipated process was eliminated by treatment with DIBAL-H (3 equiv) for *only* 15 min; adherence to this protocol furnished primary alcohol $(-)$ -15¹¹ in excellent yield. Parikh-Doering oxidation (SO₃·pyr, DMSO, Et₃N) then completed the construction of aldehyde $(+)$ -7.^{11,12}
Turning to the synthesis of vinyl iodide $(-)$ -8. Syn

Turning to the synthesis of vinyl iodide $(-)$ -8, Swern

^{(7) (}a) Yonemitsu, O. *J. Synth. Org. Chem. Jpn.* **1994**, *52*, 946. (b) Matsushima, T.; Horita, K.; Nakajima, N.; Yonemitsu, O. *Tetrahedron Lett.* **1996**, *37*, 385. (c) Matsushima, T.; Mori, M.; Nakajima, N.; Maeda, H.; Uenishi, J.; Yonemitsu, O. *Chem. Pharm. Bull.* **1998**, *46*, 1335. (d) Matsushima, T.; Mori, M.; Zheng, B.-Z.; Maeda, H.; Nakajima, N.; Uenishi, J.; Yonemitsu, O. *Chem. Pharm. Bull.* **1999**, *47*, 308. (e) Matsushima, T.; Zheng, B. Z.; Maeda, H.; Nakajima, N.; Uenishi, J.; Yonemitsu, O. *Synlett* **1999**, *6*, 780. (f) Liu, J.-F.; Abiko, A.; Pei, Z. H.; Buske, D. C.; Masamune, S. *Tetrahedron Lett.* **1998**, *39*, 1873. (g) Taylor, R. E.; Ciavarri, J. P.; Hearn, B. R.; *Tetrahedron Lett.* **1998**, *39*, 9361. (h) Jung, M. E., Karama, U., Marquez, R. *J. Org. Chem.* **1999**, *64*, 663. (i) Jung, M. E., Marquez, R. *Tetrahedron Lett*. **1999**, *40*, 3129. (j) Roush, W. R.; Lane, G. C. *Org. Lett.* **1999**, *1*, 95.

⁽⁸⁾ Smith, A. B., III; Condon, S. M.; McCauley, J. A. *Acc. Chem. Res.* **1998**, *31*, 35.

⁽⁹⁾ Hubschwerlen, C. *Synthesis* **1986**, 962.

⁽¹⁰⁾ Evans, D. A.; Bartroli, J.; Shih, T. L. *J. Am. Chem. Soc.* **1981**, *103*, 2127.

⁽¹¹⁾ The structure assigned to each new compound is in accord with its infrared, 500-MHz ¹H NMR, and 125-MHz 13 C NMR spectra, as well as appropriate parent ion identification by high-resolution mass spectrometry. (12) Parikh, J. R.; von Doering, W. E. *J. Am. Chem. Soc.* **1967**, *89*, 5505.

oxidation¹³ of known alcohol $(+)$ **-16**,¹⁴ available in five steps
from methyl $(S₁(+)$ -3-hydroxyl-2-methylpropionate was from methyl (*S*)-(+)-3-hydroxyl-2-methylpropionate, was followed by the Corey-Fuchs¹⁵ protocol (CBr₄/PPh₃) to furnish dibromide $(-)$ -17¹¹ (Scheme 3). Conversion to the

terminal alkyne $(n-BuLi; -78 °C, THF)$ followed by alkylation with MeI led to $(-)$ -18.¹¹ Attempts to generate
alkyne $(-)$ -18 in one operation resulted at hest in only alkyne $(-)$ -18 in one operation resulted at best in only modest yields. Hydrostannylation exploiting the conditions of Guibé¹⁶ then furnished a mixture of (E) - and (Z) vinylstannanes (6:1, 85% yield), separable by column chromatography.

Coupling the major (E) -vinylstannane with $(+)$ -7 $(n$ -BuLi, -78 °C, THF) proved problematic. Quenching experiments employing MeOH- d_1 revealed that after 30 min at -78 °C transmetalation had proceeded only to 30% conversion; unfortunately, warming the metalation reaction mixture to -50 °C led to decomposition. To circumvent this problem, the stannane was converted to the corresponding vinyl iodide (I_2, CH_2Cl_2) ; metalation with *t*-BuLi at -78 °C followed by treatment with MeOH-*d*¹ demonstrated complete vinyl anion formation with no decomposition.

With efficient approaches to the requisite fragments available, treatment of vinyl iodide $(-)$ -8¹¹ with *t*-BuLi at -78 °C for ca. 30 min, followed by low-temperature cannula addition to aldehyde $(+)$ -7 at -100 °C, led to a mixture of $(-)$ -20¹¹ and $(-)$ -21¹¹ (Scheme 4). With THF as solvent, a 2.7:1 mixture of **20** and **21** was obtained, favoring the desired isomer, $(-)$ -20.¹⁷ Less polar solvents (Et₂O and *tert*-
butylmethyl ether) afforded improved selectivity with heat butylmethyl ether) afforded improved selectivity, with best results (ca. 4:1) obtained with a 4:1 mixture of $Et₂O$ and pentane; the yield in this case was 65%.

Final elaboration of subtarget **3** (Scheme 5) was achieved via treatment with TIPSOTf and 2,6-lutidine to provide silyl ether $(-)$ -3.¹¹

Since the generation of highly oxygenated $d¹$ dithiane anions¹⁸ can be capricious,¹⁹ we decided to explore the coupling of $(-)$ -3 with a model epoxide (Scheme 6). To this end, treatment of $(-)$ -3 in THF at -78 °C with *t*-BuLi for 5 min followed by addition of benzyl (*S*)-(+)-glycidyl ether $(-)$ -22 provided $(-)$ -23¹¹ in 78% yield, thereby demonstrating the viability of dithiane $(-)$ -3 as a linchpin.

⁽¹³⁾ Mancuso, A. J.; Huang, S.-L.; Swern, D. *J. Org. Chem.* **1978**, *43*, 2480.

⁽¹⁴⁾ Smith, A. B., III; Condon, S. M.; McCauley, J. A.; Leazer, J. L., Jr.; Leahy, J. W.; Maleczka, R. E., Jr. *J. Am. Chem. Soc.* **1997**, *119*, 947. (15) Corey, E. J.; Fuchs, P. L. *Tetrahedron Lett.* **1972**, 3769.

⁽¹⁶⁾ Zhang, H. X.; Guibe´, F.; Balavoine, G. *J. Org. Chem.* **1990**, *55*, 1857.

⁽¹⁷⁾ The stereochemistry was determined via a combination of the Mosher ester analysis of secondary alcohols with application of the Kakisawa test (Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 4092) and the Rychnovsky-Evans 13C NMR 1,3 acetonide empirical correlation [Rychnovsky, S. D.; Skalitzky, D. J. *Tetrahedron Lett.* **1990**, *31*, 945. Rychnovsky, S. D.; Rogers, B.; Yang, G. *J. Org. Chem.* **1993**, *58*, 3511. Evans, D. A.; Rieger, D. L.; Gage, J. R. *Tetrahedron Lett.* **1990**, *31*, 7099.]

⁽¹⁸⁾ Seebach, D. *Angew. Chem., Int. Ed. Engl.* **1979**, *18*, 239.

^{(19) (}a) Oppong, I.; Pauls, H. W.; Liang, D.; Fraser-Reid, B. *J. Chem. Soc., Chem. Commun.* **1986**, 1241. (b) Konishita, M.; Taniguchi, M.; Morioka, M.; Takami, H.; Mizusawa, Y. *Bull. Chem. Soc. Jpn.* **1988**, *61*, 1, 2147.

In summary, we have developed an efficient synthesis of a common $C(1) - C(11)$ dithiane (3) for tedanolide (1) and 13-deoxytedanolide (**2**) and demonstrated that this dithiane is a competent linchpin for future elaboration of the mac-

rolide skeleton. The synthesis of $(-)$ -3, requiring 13 steps, proceeded efficiently in 15% overall yield. Studies to assemble 5 and 6, their union with $(-)$ -3, and conversion to tedanolide (**1**) and 13-deoxytedanolide (**2**) continue in our laboratory.

Acknowledgment. Support was provided by the National Institutes of Health (Institute of General Medical Sciences) through Grant GM-29028 and by an American Chemical Society Division of Organic Chemistry Fellowship to S.A.L.

Supporting Information Available: Spectroscopic and analytical data for (+)-**11**, (+)-**12**, (+)-**13**, (+)-**14**, (-)-**15**, (+)-**7**, (-)-**17**, (-)-**18**, (-)-**8**, (-)-**20**, (-)-**21**, and (-)-**²³** and selected experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org. OL9909233